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Geometrical arrangement of particles in the uniformly fluidized bed and some properties of liquid 
flow around particles are studied. Steady liquid flow in the uniformly fluidized bed of spherical 
particles for Ar 7-2 is considered to be a flow around a single particle at boundary conditions 
which are uniquely corresponding to the bed porosity and to the particle diameter. This approach 
had been already applied but the required result has not been reached as the theoretical funda-
mentals of the model have not been sufficiently solved. The basical problem we have succeeded 
to solve is specification of boundary conditions and development of the mathematical model. 
By solving the mathematical model and by use of the experiments performed the geometrical 
arrangement of particles is determined. 

Particles in the uniformly fluidized bed are at small values of the Ar number in the 
state of stable equilibrium. This can be observed visually. If the velocity distribution 
is uniform at the inlet into the bed and certain other conditions are met, the particles 
will oscillate slightly around the equilibrium position. According to this the assump-
tion that particles, at small Ar numbers in the uniformly fluidized bed of particles 
at constant porosity, are occupying the accuratelly fixed positions seems to be 
reasonable. The hydrodynamics of the uniformly fluidized bed can be considered 
as the flow around a particle under certain boundary conditions which are uniquely 
assigned to the bed porosity and to the particle diameter. If the geometrical distribu-
tion of particles in the bed and the structure of the flow around the particle were 
known, the greater would be the chance that the following problems could be solved 
in the near future: stability of the fluidized bed and criteria of nonuniformity, satura-
tion of the dilute phase at flow of the suspension solid particles-gas, equivalent 
diameter at flow of the suspension with particles of various sizes, diffusion of com-
ponents of the liquid in the uniformly fluidized bed, expansion of the uniformly 
fluidized bed etc. 

THEORETICAL MODELS 

The following assumptions form the basis of the theoretical model. 
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Models of Uniformly Fluidized Bed 1977 

]) Particles have the shape of ideal sphere, are of the same dimension, have the 
same density and in the bed at constant porosity have the same position without 
rotation. 2) The liquid is Newtonian and incompressible. At the flow in the bed 
its Newtonian character is not changing and it holds gf < qs but both densities 
do not differ much. 3) Liquid flow in the bed (upwards) is steady (without turbulent 
velocity pulsation). 4) The bed is unlimited, i.e. the boundary effects do not appear. 
5) Flow pattern for flow around each particle is the same. 6) The particles are 
situated one above the other in layers in horizontal planes so that to each horizontal 
plane passing through centres of particles (i.e. the main plane) to each particle per-
tains geometrically the same environment formed by other particles (so called 
boundary surroundings) and the same geometrical flow pattern (i.e. the boundary 
flow pattern) which is limiting in the main plane the subspace of flow pertaining 
to one particle. The liquid flowing through this subspace is said to flow around the 
considered particle in the main plane. The subspaces of flow are covering the main 
plane without voids and without the mutual overlapps (so called close coverage). 
7) If the origin of cylindrical coordinates is identical with the centre of the particle 
and if the positive direction of the axis is considered to be opposite to the direction 
of gravity force then the velocity field around the particles in the main plane is in 
points symmetrical with respect to the origin. Simultaneously it holds 

vr = v@ = 0 , if z = 0 ; (1) 

c2vr dv& d2v& / , x 
—7 = 0, resp. v— - = v —— , if z = 0; (la) 
dz1 dz dzz 

<3 2 
if r ^ R, z = 0; (lb) 

dz2 

v = v(r) , if r ^ R , z = 0, (lc) 

where R is the radius of the circle inscribed into the boundary pattern (so called 
boundary circle). 8) Stable can be only beds with such arrangement of particles 
in main planes at which the boundary circles of neighbouring particles are in contact. 
9) Spaces between boundary circles in the main plane are regions with the constant 
velocity u, for which holds 

« = v(R)* = 0 , (2) 

i.e. the liquid velocity is constant and equal to the velocity in the circumference 
of the boundary circle. 10) Stable can be only beds with arrangement of particles 
in the main plane at which the regions with constant velocity are mutually symmetrical 
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in respect to the centre of that boundary circle with which they are in contact. 11) If the 
conditions 1 to 10 hold, the forces equilibrium between the hydrodynamic, buyoancy 
and gravity forces (at zero horizontal component of hydrodynamic force in the main 
plane) is possible only for vertical arrangements of main planes according to one of the 
following principles: a) Main planes are arranged so that on the vertical line passing 
through the centre of any particle in some main plane is situated the centre of one 
particle in each next main plane (i.e. the particles are situated one above the other 
in vertical columns), b) csntres of particles in any main plane are above the centres 
of symmetry of regions with constant velocity in the preceding main plane. 12) 
Let us assume that such particles are found which form a uniformly fluidized bed 
for the given superficial liquid velocity. An infinite number of bsds can be constructed 
from these particles which differ by the geometrical arrangement (but different from 
those for the uniformly fluidized bed) but in each of them a) the conditions 4 to 11 
are met, b) at the considered liquid velocity on the particle the equilibrium of gravity, 
buoyancy and drag forces takes place. 

All these beds are without rigid bonds unstable and are denoted as equivalent, 
unstably balanced beds (for the given velocity of the considered liquid and considered 
particles). The potential energy of the sufficiently large number of particles above 
the suitably chosen horizontal cross section in the uniformly fluidized bed is smaller 
than the potential energy of the same number of particles above the equally large 
horizontal cross-section in the arbitrary equivalent unstably balanced bed (at the 
given velocity of the considered liquid and for the considered particles). 

B A S I C A S S U M P T I O N S 

On the basis of experiments carried out, conditions 1 to 3 can be satisfactorily ap-
proached by a suitable choice of particles and of the liquid and by the suitable 
arrangement of the fluidized bed at Ar ^ 7-2. 

The assumptions 5 and 6 are the simplest way how to state that on each particle 
in its stable equilibrium state the same hydrodynamic forces act and that liquid 
streams flowing around the neighbouring particles are mutually in contact. The bound-
ary region of the subspace with the stream flowing around an arbitrary particle is 
also the boundary region of the subspaces with streams flowing around neighbouring 
particles. 

Assumptions 7 to 10 are characterizing the geometrical arrangement of particles 
in main planes and are suplementary to condition 6. At first, only part of cases is 
considered in which the condition 6 is satisfied for each particle in the main plane. 
Geometrically equal surroundings can be formed by other particles around each 
particle in the main plane e.g. in the case the distribution of particle is suitably 
related to uniform n-angles which can cover this area without voids and without 
overlaps. It is demonstrated that this condition is satisfied only by an equilateral 
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triangle, a square and a hexagon. F rom planimetry it is known that the internal 
angle of the uniform n-angle is y = 180° —360°jn. The plane can be covered by uni-
form- n-angles so that first of all the region around each vertex of one considered 
n-angle is covered in this plane and then are covered in a similar way regions around 
free vertices of adjoining n-angles. Fig. 1 is characteristic for the first step where 
the region around the vertex, which is the intersection of sides a and b is covered 
at first. For the n-angles to cover completely the area between the arms of the angle 
o) + y at one of their common vertices the condition must hold 

360° = (k + 1) y = (k + 1) (180° —360°/n), (3) 

where k is the number of n-angles which must be assigned in the considered vertex 
to the first n-angle. If the condition (3) is met then it is possible to cover completely 
the area by the considered n-angles. The number of n-angles m which will be in mutual 
contact with the first one in Fig. 1 is given by the relation 

m = k + (n - 2) (k - 1) + k - 2 = n(k - 1 ) . (4) 

According to (3) it holds k = (n + 2)/(n — 2) and after substitution into Eq. (4) 
the relation is obtained 

m = 4n/(n - 2) . (5) 

In agreement with the physical meaning k and n > 2 are integers. By substitution 
for k, the pairs are obtained: k = 1, n — oo; k = 2, n = 6; k = 3, n = 4; k = 4 
n = 10/3 (unsatisfactory); k = 5, n = 3. With increasing value k > 5 the value 
of n < 3 is monotonously decreasing but n < 3 has no physical meaning. This 
means that among all equilateral n-angles the area can be closely covered only by equi-
lateral triangles, squares and equilateral hexagons. A close cover by equilateral 
hexagons can be considered as a suplementary specification in the net of close cover-
age by equilateral triangles. From Eq. (5) results that for the closely covered area, 

F I G . 1 

Procedure for Close Coverage of the Plane 
by Equal Regular Polygons 
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the equilateral triangle has twelve neighbouring tringales, the square has eight 
adjacent squares and the equilateral hexagon has six neighbouring hexagons. 

Limitations set by condition 6 to the boundary surroundings and boundary flow 
pattern is the application of condition 5, to the main plane. According to condition 5 
a close relation must exist between the geometries of the boundary surroundings 
and the boundary flow pattern. Both of them are determining the flow pattern around 
the particle in the main plane by the stream which is adjoined to it up to limitations 
in the contact with the same streams around neighbouring particles. 

In accordance with the considerations on close coverage by equilateral n-angles 
condition 6. is fulfilled if particles are situated by their centres in corners of squares 
which are closely covering the main plane. In this case it is possible to imagine 
two arrangements of boundary flow patterns which satisfy simultaneously the as-
sumption 5: 

a) The boundary flow patterns (dashed line) have a shape of squares in the centre 
of which are particles, see Fig. 2. 

b) The boundary flow patterns have the shape of isosceles triangles with situation 
of particles according to Fig. 3. It can be seen f rom this Fig. that a close coverage 
of the area by isosceles triangles is again the coverage by squares defined in another 
way. 

FIG. 2 

Boundary Surroundings of Particles and 
Boundary Flow Patterns when the Particles 
Are Situated in the Corners of Squares and 
the Boundary Flow Pattern Is a Square 

FIG. 3 

Boundary Surroundings of Particles and 
Boundary Flow Patterns when the Particles 
Are Situated in Corners of Squares and the 
Boundary Flow Pattern Is a Isosceles 
Triangle 
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In Fig. 4 t he re is the ma in p lane closely covered by equi la tera l t r iangles (dashed 
mesh) a n d on thei r basis is addi t ional ly cons t ruc ted by solid lines t he mesh of equi-
lateral hexagons . Pos i t ion ing of par t ic les a n d of b o u n d a r y flow p a t t e r n s can be 
made accord ing to Fig. 4 — in a c c o r d a n c e wi th a s s u m p t i o n 6, a t the s imu l t aneous 
validity of cond i t ion 5 — in t w o ways : 

a) Cent res of part icles a re s i tua ted in the corners of hexagons d r a w n in ful l lines; 
in this case the b o u n d a r y flow pa t t e rns represen t equa l equi la tera l t r iangles in the 
main p lane . 

b) Cent res of par t ic les a re s i tuated in the corners of t r iangles d r a w n in dashed lines; 
in this case the b o u n d a r y flow pa t t e rn s represent in the m a i n p l ane equa l regular 
hexagons. 

The cond i t ion f o r pa t t e rn of par t ic le d is t r ibu t ion a n d l iquid velocity in the ma in 
plane t o be symmetr ica l a n d equa l wi th respect t o t he cent re of any par t ic le is posi-
t ioning of cent res of par t ic les in the cent re of symmet ry of the b o u n d a r y flow pa t t e rn . 
In such case t he ze ro hor i zon ta l c o m p o n e n t is t he resu l tan t of forces by which o the r 
particles in t he m a i n p lane act via l iquid on an a rb i t r a ry par t ic le . As is d e m o n s t r a t e d 
in the fo l lowing pa r t , the zero value of the ho r i zon ta l c o m p o n e n t of this resu l tan t 
is one of cond i t ions of existence of a fo rce equ i l ib r ium in the bed . T h e p r o b l e m 
of the velocity field a r o u n d the par t ic le in the ma in p lane , accord ing to Figs 2 t o 4 is 
partially a p r o b l e m of flow a r o u n d a perfect ly i sometr ic b o d y in the p l ane l imited 
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Mesh for Distribution of Particles and Limi-
tation of Boundary Flow Patterns in the 
Main Plane by Use of the Equilateral Triangle 
and Equilateral Hexagon 

Fig. 5 
Boundary Circles in Square Boundary Flow 
Patterns 
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by an equilateral n-angle where n is a relatively small number. This fact is represented 
by assumption 7, which has to be considered as a heuristic hypothesis of the theoretical 
model. The velocity field has a circular symmetry in the main plane up to some 
distance R from the centre of particle. The circular symmetry in the whole region 
limited by the boundary flow pattern seems improbable. The requirements according 
to which the boundary circle has to be inscribed into the boundary patterns has 
a broader physical meaning which appears when into the mesh according to Figs 2 
and 3 the boundary circles are drawn. To Fig. 2 then corresponds Fig. 5 and the 
boundary circle inscribed into the triangle in Fig. 3 can be imagined. The circular 
symmetry of the velocity field is due to the particle from which it spreads up to the 
edge of the boundary pattern where its progress is stopped by an equally strong 
effect of the adjacent particle in the main plane, so that the boundary circles around 
adjacent particles must be in contact similarly as those in Fig. 5. This is also included 
in the assumption 8. which is obviously of importance only if the boundary circles 
are inscribed into the boundary patterns. Unlike in Fig. 5 the boundary circles 
inscribed into triangles in Fig. 3 cannot be in contact and this arrangement must be 
considered as unrealistic. 

The boundary circles in Figs 6 and 7 correspond according to the above proposed 
model to the mesh in Fig. 4. It can be proved that if into centre of each hexagon 
in Fig. 6 is situated the same circle as those in its corners the arrangement according 
to Fig. 7 is obtained. The continuous transfer from the velocity of hindered settling 

FIG. 6 

Boundary Surroundings of Particles and 
Distribution of the Main-Plane to Subspaces 
of Flow with Boundary Circles when the 
Boundary Flow Patterns Are Equilateral 
Triangles and the Centres of Particles Are 
in Corners of Equilateral Hexagons 

FIG. 7 

Boundary Surroundings of Particles and Di-
stribution of the Main Plane to Subspaces 
with Boundary Circles when the Flow 
Patterns Are Equilateral Hexagons and Par-
ticles Are Situated in Corners of Equilateral 
Triangles 
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of the suspension at g -> 1 to the velocity of free settling of an individual particle 
in an infinite liquid justifies the assumption for the bed the validity of the relations 
(i) to (lb) because the equations of this type are valid also for creeping flow around 
individual particles. 

The voids between the boundary circles in Fig 5 to 7 resemble the outlet hole from 
a vessel wall as there mouth streamlines symmetrically curved into oposing sides. 
The velocity has a constant value on the whole perimeter of the void and the circular 
symmetry of the field ends there. This leads to the simplest model consideration 
of the velocity field in the voids which is heuristicaly formulated by the hypothesis 9. 

The survey of all geometrical structures in the main plane which comply with as-
sumptions 5) to 8) can be obtained from the following consideration: Let us define 
a number of circles as a system of mutually contacting circles with their centres 
situated on a straight line (so-called axis of a row). The rows of circles are arranged 
in the main plane in parallel so that the circles of two adjacent rows are in contact. 
The mutual contact of circles of two neighbouring rows is satisfying condition 8 
which requires that the axis of a given row and the straight line connecting the centre 
of a circle in this row with the centre of another circle (from the adjacent row) 
with which it is in contact, form an angle a from the range a e ^tt). This means 
that conditions 5 to 8 require that the particles on the main plane be situated in cor-
ners of squares (a = and rhombs with a sharp angle a e -Jtc). The equilateral 
triangles and hexagons can be considered as a sufficient specification in the mesh 
of rhombs with a sharp angle a = jiz. For the angle a e |7t> the conditions 5 

Situation of Rows of Boundary Circles in the 
Main Plane at Their Shift by the Same Angle 
« in the Same Direction. The Hexagon 
ABCDEF Represents the Boundary Flow 
Pattern. Particles Must Be Situated in Corners 
of Rhombs 

F I G . 8 
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to 8 can be met in four ways (here condition 5 is definitely met at least in the main 
plane): 

a) Rows of circles are in the main plane situated so that each consecuting is in res-
pect to the preceding one shifted in the same direction by an equal angle a, see Fig. 8. 

b) Rows of circles in the main plane are situated according to the following rule: 
If an arbitrary row is chosen as the zero and the next rows, are numbered 1, 2, 3, ... 
then an arbitrary row 2n + 1 (where n = 1, 2, 3...) is shifted in the same direction 
in respect to the 2n-th row by the same angle a and an arbitrary 2n-th row is shifted 
in the same direction in respect to the 2n — 1 row by the same angle /?, where a # /?, 
but a e <jtt, p e £tu>. Fig. 9 gives one of these cases. 

c) Row of circles situated in the main plane is alternately shifted in respect to the 
preceding one by the same angle a so that behind the row shifted to right side is 
situated the row shifted toward the left side etc. see Fig. 10. 

d) Rows of circles which are situated one behind the other in the main plane are 
mutually shifted in opposite directions at two different angles, i.e. behind the row 
which is in respect to the last one shifted toward the right side by the angle a is 
situated the row which is in respect to it shifted toward the left side by the angle /?; 
the next one is again shifted toward the right side by the angle a etc. Such arrange-
ment is demonstrated in Fig. 11 for a < /?. 

By positioning particles in centres of boundary circles arranged according to Figs 6, 
9 to 11 the layers are obtained where in the main plane the distribution of particles 

FIG. 9 

Situation of Rows of Boundary Circles in the 
Main Plane at Alternately Varying Angle 
[a, P\ of the Shift in the Same Direction 

FIG. 10 

Situation of Rows of Boundary Circles 
in Main Plane at Constant Angle a and 
Alternately Varying Direction of the Shift. 
Rows of Circles in Neighbouring Main Pla-
nes Are Dashed 
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and the liquid velocity is not symmetrical as to the centre of particles. This is be-
cause the regions with the constant velocity situated around the boundary circle 
are not mutually symmetrical according to its centre. According to assumption 10. 
the beds with such distribution of particles in the main plane cannot be stable unlike 
of those beds with symmetrical distribution according to Figs 5, 7 and 8. The physical 
meaning of assumption 10 can be understood from the following consideration: 
From condition 5 results that the neighbouring main planes cannot be positioned 
arbitrarily, i.e. that between the arrangement of particles in the main plane and the 
vertical positioning of main planes exists relation which reversely affects admis-
sibility of particle distribution in the main plane. A typical example of arrangement 
of main planes contradictory to condition 5 is given in Fig. 12. The angle a represents 
rotary shift of boundary flow patterns in the second main plane related to the 
boundary pattern in the first main plane which is situated below. 

Condition 5 is satisfied at two types of arrangements of main planes which are 
given by the assumption 11. It seems that at conditions 5 to 9 these are the only 
satisfactory arrangements of main planes. Arrangement according to assumption 
11a is denoted as the structure of type A and the arrangement according to assump-
tion lib as the structure of type B. For the structures of type A, condition 5 is 
satisfied in the space for all the beds where it is satisfied in the main plane. This 
means that in accordance with condition 5, there is formally no difference between 

FIG. 11 

Situation of Rows of Boundary Circles in the 
Main Plane at Alternately Varying Shifts 
by the Angle a to the Right and by the Angle 
P to the Left 

FIG. 12 

Example of Vertical Arrangement of Two 
Main Planes which Is in Disagreement with 
the Assumption that the Flow Pattern at 
Flow Around Each Particle in the Bed Is the 
Same. Centres of Particles (not indicated) 
Are in the Corners of Squares. Boundary 
Patterns are Squares 
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the symmetrical and asymmetrical arrangement in the main plane. But we argue 
the assymetric structures in Figs 6, 9 to 11 as follows: Let us imagine a duct between 
two adjacent main planes which is formed by elementary streamfilaments which 
pass through regions with a constant velocity situated one behind the other. In this 
vertical duct are elementary streamfilaments spreading at the bottom and narrow-
ing toward the top. If the distance of main planes is h then the increment of the 
specific pressure energy on the distance h is given by the relation 

From this and from the properties of flow in the region with constant velocity results 
that the mean specific dissipated energy in such a duct equals to 

and thus flow in the duct is not potential. There exist viscous stresses which are 
dependent on the shape, orientation and size of the region with the constant fluid 
velocity. These stresses are partially characterizing the velocity field between two 
main planes and thus also the planary forces on the surface of the particle. Let us 
assume that the particles are arranged in the horizontal main plane according to one 
of symmetrical structures given in Figs 5, 7 or 8. Through the system of particles 
so arranged in an isolated plane the fluid is flowing so that at a sufficient distance 
from the particle the velocity field is homogeneous, the velocity vector is perpendi-
cular to the main plane and the change in velocity is the result of action of particles 
only. It is obvious that the elementary surface forces act on the particle in pairs 
for which the horizontal components are canceled as the velocity field in the sub-
space ascribed to the particle by the stream in an arbitrary plane parallel with the 
main plane has a point symmetry in respect to the intersection of the considered 
plane with the vertical passing through the centre of particle. In assymetrical arrange-
ments which are given in Figs 6, 9 to 11 the prior point symmetry of the velocity 
field in an arbitrary horizontal plane is upset in the subspace with the stream ascribed 
to the particle. The horizontal components of elementary surface forces on the particle 
are not cancelling each other in the pairs. If the stream around the particle in an iso-
lated main plane has a symmetry in which the horizontal components of elementary 
surface forces on the particle cancel each other, then for the force equilibria must suf-
fice to arrange the main planes so that this symmetry is not upset and their presence 
affects only the vertical component of elementary surface forces on the particle. 
If the stream around the particle in an isolated main plane does not have a symmetry 
necessary for cancelation of the horizontal components of elementary surface forces, 
the layers in main planes must be arranged for the force equilibria so that their 
presence affects simultaneously the vertical as well as horizontal component of eie-

AeP = ~ + 9(Qs ~ Qf) (1 - e) ti}lef M 

^diss = O f e - 0f) 0 - «) *]/<?. (7) 
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mentary surface forces on the particle. It must be expected that in general from the 
condition of zero horizontal component of the resultant of surface forces another 
arrangement of main planes results than from the condition of force equilibria for 
the gravity, buoyancy, and vertical component of the resultant of surface forces 
on the particle. Let, however, us assume that the force equilibrium can exist also at 
the asymmetric arrangement of particles in main planes. Disturbance moving the par-
ticles toward the narrower ducts, would then cause a greater drag than at their shift 
toward the wider ducts and it seems that such system would finally form a sym-
metrical structure. 

These considerations support hypothesis 10. which should be also valid for struc-
tures of both types A and B. 

Condition 5 for the structures of type B obviously cannot be met for asymetric 
arrangements given in Figs 6, 9 to 11. Also the structures of type B according to Fig. 8 
are probable. Here, it seems improbable, that after hitting the particle, the liquid 
from a narrow stream will form a circularly symmetrical region in the boundary 
circle on the periphery of particle. 

It results from the above that the structure of type A can have particles arranged 
in the main plane according to Fig. 5 (structures of type A t) according to Fig. 7 
(structures of type A 2) and according to Fig. 8 (structures of type Ax) while the struc-
tures of type B can have the arrangement according to Fig. 5 (structures of type 2?,) 
or according to Fig. 7 (structures of type B2 or J53). 

For particles arranged in the main plane according to Fig. 7 for structures of type B, 
the main planes can be situated according to Figs 13 or 14. For the main plane de-
noted as zero then a) for arrangement of particles according to Fig. 13 (structures 

FIG. 13 F I G . 1 4 

Mutual Situation of Main Planes for Struc- Mutual Situation of Main Planes for Struc-
ture of the Type B 2 ture of the Type B 3 
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of type B2) their centres in an arbitrary 2k main plane (where k is an integer) are 
situated exactly above the particle centres at the zero main plane and the centres of 
particles in the first and each (2k + l)th plane lay exactly above the centre of symme-
try of the half number of regions with a constant velocity in the zero plane. Along 
the whole bed height three straight ducts are situated around each particle the hori-
zontal cross-sections of which change in alternately their orientation in the main 
planes. The streams from other three regions with a constant velocity are hitting the 
particles in the adjacent main plane. Distribution of these streams and of direct 
ducts on the circumference of the boundary circle is not symmetrical with respect 
to its centre, but the over-all distribution of hitting streams and of direct ducts 
is symmetrical in respect to the three vertical planes which are passing through the 
centre of particle. With respect to these planes we can assume that for the force 
equilibria the horizontal components of the resultant by which other particles have 
acted on a particle in the main plane is nill. For these reasons this arrangement has 
been considered possible. 

b) For an arbitrary arrangement according to Fig. 14 (structures of the type B3) 
centres of particles in an arbitrary 3fc-th main plane are situated exactly above the 
centres of particles in the zero main plane; centres of particles in the first and each 
(3k + l)th main plane are situated exactly above the centres of symmetry of the half 
number of regions with a constant velocity in the zero main plane. Centres of parti-
cles in the second and in the each (3k + 2)th main plane are situated exactly above 
the centres of symmetry of the second half of regions with a constant velocity in the 
zero main plane. Around each particle at a certain main plane, there are three 
straight vertical ducts which originate in the adjacent lower main plane and termi-
nate by the direct hitting the particles in the next higher main plane. Other three 
ducts around the particle are formed in the considered main plane which are pass-
ing at the varied orientation through the first adjacent main plane and are terminat-
ing by the direct hit on particles in the second higher main plane. From condition 5 
results that the distance between the zero and first main plane is the same as bet-
ween the first and second main plane. In each fourth main plane the distribution of 
particles is exactly repeated. 

Distance of Main Planes 

From the geometry results, that quantities-particle diameter d, radius of the boundary 
circle R, distance of main planes h and porosity of the bed e are at structures of type A 
and B bound by the relation. 

F(d, h,R,s) = 0 , (8) 

where the form of the function F can be determined for each assumed arrangement 
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of particles. Since in each main plane is the arbitrary particle surrounded by other 
particles symmetrically to its centre, the hydrodynamic effect of these particles 
can cause only an additional force in the vertical direction. As is known1 , this 
force increases the drag force in comparison with that which would be found 
at the same superficial velocity for an individual particle. From the experiments1 

results, that at the same structures A the layers above and below the considered 
main plane are causing decrease in the drag force. For the same distance of main 
planes f rom the considered main plane the drag force is more reduced by the layer 
preceding the considered main plane. For structures of the B, the bed in an arbitrary 
main plane is causing a considerable increase of the drag force on particles in the 
next following main plane in the direction of flow as it is increasing the local liquid 
velocity around the particles. If for structures of the type A or B the constant distance 
of particles 2R is kept in the main plane and the distance of main planes is varied, 
only vertical components of elementary forces on the surface of particles do change 
at constant velocity of the chosen liquid, and their horizontal components are can-
celling each other in pairs as the symmetry of flow around the particle is not changing. 
From nature of the effect of surrounding particles on the drag force given here directly 
results the following important conclusion: ,,For an arbitrary structure of the type A 
or B there exists an interval of velocities in which to a certain definite velocity cor-
responds a sequence of mutually corresponding pairs of quantities h and R f rom 
continuous intervals (and thus probably also a continuous interval of porosities a) 
at which the equilibrium of gravity, buoyancy and drag forces on the particle takes 
place," It is possible to imagine a fluidized bed in which the particle distribution 
is randomly varied at a constant superficial liquid velocity so that the equilibrium 
of forces on the particle is not considerably affected i.e. that the pairs of quantities h 
and R exist (and to them corresponding value e) at least in part of intervals which 
at constant superficial velocity are limiting the equilibrium of forces. In gravity 
field the potential energy of particles in such a bed should vary and would be ac-
companied by pressure and velocity pulsations. Such consideration would be ac-
ceptable in agreement with the properties of the bed at larger values of the Ar number. 
At small values it is more exact to accept the assumption 1 according to which at con-
stant superficial liquid velocity both the porosity and position of particles in the bed 
are constant. This means that under such conditions for given particles the 
uniformly fluidized bed will have at some liquid velocity only one porosity with 
fixed values of h and R for the given type of structure. To all other pairs of values h 
and R from a certain structure of the same type and f rom structures of other types 
at which the equilibrium of forces can exist, corresponds an unstable arrangement 
of particles in beds without rigid bounds. The condition of stability is considered 
in the next part of this study. On basis of hydrodynamic considerations and stability 
conditions for a uniformly fluidized bed it should be possible to derive a relation 
for hjR independent of Eq. (8). With respect to complexity of the problem analytical 
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solution of such problem has not been looked for. It was possible to find by a semi-
empirical method quantities on which the ratio h/R depends. Let us assume that the 
relation holds 

h\R = (p{iiun2, . . . ) , (9) 

where cp is an unknown function of prior unknown parameters 7r,, n2 • • • • If on basis 
of the theoretical model which has been characterized earlier (and into which is 
also included Eq. (9)) the mathematical model is proposed, solved and compared 
with the experiment (which is also demonstrated in the remaining part of this study) 
it is obtained that for Ar ^ 7-2 Eq. (9) must have the form 

h\R = cp{e) . (10) 

If the validity of the model would be extended to region of Ar > 7-2 then it should 
hold 

h\R = (py( A r , e ) . (//) 

Instead of Eq. (11) it is possible to use other equations, e.g. hjR = <pyl(Re,, e), 
hjR = <py2(Ly, e) as the Ar and Re, or Ly numbers are bound by a unique relation. 

From Eqs (8) and (10) results that for the uniformly fluidized bed at Ar ^ 7-2 
a physically correct relations could be found, which are of the types 

or 
R = dF^e, <p(e)]| 

h = dF2[s, <p(e)] 
(12) 

Functions F^e) and F2(e) are known as the function F in Eq. (8) is known, but 
function cp must be determined experimentally by use of the mathematical model. 

First Condition of Stability of Beds with Structures of A and B Types 

By fixing the position of particles by rigid bonds it is possible to prepare beds 
with structures of all considered types A and B for all pairs of quantities h and R 
at which the equilibrium of forces takes place. By fixing the required superficial 
liquid velocity, the state with the forces in equilibrium at small Ar numbers is reached. 
If such arbitrary bed is formed which at the force equilibrium has a different particle 
distribution than the uniformly fluidized bed (such beds have been for condition 
12 denoted as equivalent unstably balanced) and the solid bonds are removed a spon-
taneous particle motion takes place which leads to the formation of the uniformly 
fluidized bed with the porosity fully corresponding to the given liquid velocity. 
The reason of this should be seen as follows: for the creeping flow around the particle 
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there also appear in the liquid, due to non-uniformity of particle surface and other 
reasons, small disturbance which disappear with time. Due to this, the equilibrium 
of forces on the particle is slightly disturbed and particles are displaced f rom the 
equilibrium position. These displacements are the first step for decay of unstable 
structures. The attempts to solve the problem of stability of structures A and B 
in the frame of analytical mechanics f rom this point of view have not yet been suc-
cesful. Spontaneous transfer of arrangements in unstable equilibrium to those in stable 
equilibrium of the uniformly fluidized bed is an irreversible process related with the 
energy dissipation at overcomming the drag of the liquid by the moving particles. 
From the given analysis is obvious that it is possible to reach also reversibly f rom 
an arbitrary state the state of stable equilibrium at constant superficial liquid velo-
city if the particles are moving by an infinitesimal velocity only on such trajec-
tories which correspond to the transitional equilibrium states. Such trajectories 
between two arbitrary states in equilibrium are possible as the intervals of values 
h and R, the pairs of which are determining the equilibrium states, are conti-
nuous and to an infinitesimal change in h corresponds an infinitesimal change in 
R if for a new arrangement of particles the equilibrium of forces is reached. If the 
potential energy (in the earth gravitational field) of particles in the initial state 
of unstable equilibrium differs f rom the potential energy in the final state of stable 
equilibrium then for the reversible transfer in the environment a reversible work 
must be done in which the potential energy of particles is consumed if its value 
in the bed decreases, or the potential energy is added to the particles if its value 
in the bed increases. If the potential energy of particles in the state of stable equi-
librium were greater than the potential energy of particles in any of unstably balanced 
states the spontaneous transfer could not take place as the impulse of forces re-
sulting from small disturbances is accidentally changing its direction and their 
power output is small in comparison with the power output of forces which are 
causing the energy dissipation and which are necessary for an increase in the poten-
tial energy of particles. At a spontaneous transfer f rom the state with a larger potential 
energy to the states with a smaller potential energy the over-all loss in potential 
energy is dissipated. The contribution of the power output of forces resulting f rom 
small disturbances can be at such a spontaneous transfer negligible. 

If thus at a constant superficial liquid velocity at least some of particle arrangements 
according to structures of types A or B, at which the equilibrium of forces takes place, 
differ by the potential energy of particles then according to the aforesaid, assumption 
12 should hold as a very probable hypothesis. From the next consideration results 
a simple physical meaning of this hypothesis: Let us consider the potential energy 
of particles in the uniformly fluidized bed and in beds which are with it equivalent 
unstably balanced. As the basical horizontal cross-section situated in the bed at the 
level - = z0 = 0 we choose a uniformly widened boundary pattern which is charac-
teristic for the just considered type of structure. If the type of structure is altered, 
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the shape of the basical cross-section will also change but its area will remain constant. 
If this cross-section is oriented in the horizontal plane so that its sides are parallel 
with sides of boundary patterns, the formal assignment of particles to those regions 
of the basical cross-section on its perimeter which are not fully covering the boundary 
pattern is simplified. Let us assume that the area of the basical cross-section S is 
sufficiently large so that the number of the formally assigned particles would be 
negligible in comparison with the total number of particles Nt which are in the main 
plane on the area equal to the area of the basical cross-section. The vertical planes 
situated in edges of the basical cross-section form with this cross-section as the base 
an angular vessel open at the top. Part of main planes which are situated in this 
vessel contain the equal number of particles N t . If the boundary pattern limits the 
area S1 on the main plane then it holds 

N, = SjS, . (13) 

Let us consider in this angular vessel the mean specific potential energy of a suffi-
ciently large constant number of particles N. This mean specific potential energy is 
changing at the transfer from the structure of the uniformly fluidized bed to dif-
ferent arrangements of particles in equivalent unstably balanced beds. If the arrange-
ment of particles in the bed is known, it is possible to calculate the volume of the 
bed Vx which corresponds to one particle, and it obviously holds 

z = NV1jS , (14) 

where z is the height of the bed assigned to the considered N particles in the angular 
vessel. Let us assume that the basical cross-section is situated in the middle between 
two main planes on the level z0 = 0 to which the zero specific potential energy 
is assigned. Centres of gravity of N t particles in the lowest main plane in the limited 
volume of the bed have in respect to z0 = 0 the position zt = hj2. Remaining 
N — Nj particles are forming formally q layers, where 

q = ( N - N1)/N1 . (15) 

The number q can be written as the sum 

q = x + v , (15a) 

where x is an integer part of number q i.e. x = [q ] and for the decimal part y holds 
y e <0; l). If y — 0 then z — (x + 1 )h and the angular vessel is intersected by x + 1 
main planes. First of them is in the distance from z0 = 0 for h/2 and the level z is in 
the middle between the x + 1 and x + 2 main planes. The over-all potential energy 
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Ez of considered particles is then, according to the definition, equal to 

= N^gd3 gs(x + l)2 hj 12 . (16) 

If y e (0; 1), then in a limited volume the N considered particles form beside the 
integer x 4- 1 sections of main planes part of the (x + 2)th section in which they 
formally participate by yNt particles. Potential height of these yNt particles is 
(/j/2) + (x + 1) h. Instead of Eq. (16) it should be written 

Ez = N.ngd3 &[(* + l ) 2 h + y(2x + 3) ti]/12 . (17) 

If Eq. (17) is divided by the term nNd3 qs/6, the relation is obtained for the mean 
specific potential energy ez of particles related to the considered constant number 
of N particles in the angular vessel with the height z. If into the so arranged equation 
the following substitutions are made: for x the relation q — y from Eq. (15a), for q 
the right hand side of Eq. (15), for N f rom Eq. (14), and for Nt from Eq. (13), the 
relation is obtained 

= (gVjlzS,) [(zSlV,)2 h - y(y - 1) h] . (18) 

In the next part is demonstrated that for structures of all A and B types holds 
V1 = hSt and thus f rom Eq. (18) is obtained 

= (ghj2z) [(;z2lh) - y(y - 1) h] . (19) 

At a sufficiently large number of particles N which are suitably chosen z2jh > 
> y(y — 1) h and it is possible to write 

~ gzj2 . (20) 

From this and from assumption 12 results that if above a sufficiently large cross-
-sectional area a uniformly fluidized bed and all with it equivalent unstably balanced 
beds are constructed at the given liquid velocity from the sufficiently large number 
of particles the uniformly fluidized bed in between them would have the smallest 
potential energy of particles and thus the smallest bed height and also the smallest 
mean volume of the bed which corresponds to one particle. This is the principal 
physical meaning of assumption 12. 

It is necessary to say that for the sake of accuracy, the potential energy of particle 
should be considered in the form gnd3(gs — gf) z/6 instead of the earlier used rela-
tion gnd3gs z/6. But this difference has no effect on the use of ez as the criterion 
of stability. Hypothesis 12 is denoted as the first condition of stability of beds with 
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structures of the A and B types. By this we want to stress the experimentally known 
fact that there exist also some other conditions which must be fulfilled so that the 
uniformly fluidized (stable) bed could exist. 

The proposed mathematical model is considered as one of the simplest yet pro-
posed. It enables to formulate the hydrodynamic problem of the uniformly fluidized 
bed, to form the mathematical model and obtain a significant solution. By formulating 
anew the assumption 7 which is the sensitive part of the model, it is possible to con-
struct more complicated mathematical models with other assumptions remaining 
valid. E.g. the boundary circle can be deformed (at once or in dependence on porosity) 
symmetrically in respect to its centre so that analogy of condition 8 be fulfilled ac-
cording to which the adjacent so deformed sections are in contact. But this means 
that it is necessary to change assumptions given by Eqs (2) and ( lc) and reject the 
assumption of circular symmetry of the velocity field in the region of the subspace 
limited by the deformed boundary circle or to reject the assumption that the velocity 
field is homogeneous in spaces between the deformed boundary circles. 

LIST OF SYMBOLS 

a, b adjacent sides of the uniform n-angle 
Ar = gd3(Qs — q ( ) Q[j/u2 Archimedes number 
d diameter of a spherical particle 
ep specific pressure energy of liquid 
e d i s s specific dissipated energy of liquid in section h 
f>z mean specific potential energy of particles according to (18) 
Ez potential energy of particles according to (16) 
F, Fl, F2 functions 
g gravitational acceleration 
h distance of main planes in the bed 
k number of uniform and equal n-angles which have to be assigned to one vertex 

of such n-angle at a close coverage of the plane 
Ly = R e f / A r Ljashchenko number 
m number of regular and equal n-angles which are surrounding at the closely cover-

age of the plane the arbitrary n-angle in this plane 
n number of angles in a regular polygon 
N number of particles in the bed above the chosen cross-section to which the po-

tential energy in the terrestrial gravitational field is related 
TVj number of particles which are in the part of main plane limited by the chosen 

cross-section S at determination of potential energy of particles in the bed 
q number of layers (main planes) according to Eq. (75) 
r radial cylindrical coordinate, when the origin of the system is in the particle centre 
R radius of the boundary circle (inscribed into the boundary flow pattern) 
Re( = di\Q fjfi Reynolds number at velocity of free settling 
S area of basical cross-section at determination of the potential energy of particles 

in the bed 
cross-sectional area of boundary pattern 
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u fluid velocity on the boundary circle and in the region of constant velocity 
vr componen t of local liquid velocity in the direction of the coordinate r at poin ts 

of the boundary flow pattern in the main plane 
vt free settling velocity of particles in the actual fluid 
vz — vz(r) local fluid velocity in points of the main plane a round the particle at r R 
v e component of local fluid velocity in the direction of cylindrical (angular) co-

ordinate <9 in points of boundary flow pat tern in the main plane 
V1 volume of the bed corresponding to one particle 
x integer part of number q according to Eq. (75a) 
y decimal part of number q according to (15a) 
[ ] integer par t of the number in the text 
a, fi angles according to Figs 8 and 9 
y angle in regular polygon, Fig. 1 
Afp increment in specific pressure energy of fluid in duct of a bed in the section h 
s porosity of the uniformly fluidized bed or of a bed with some other s t ructure 

of the type A or B 
7ty, 7iji ••• dimensionlessquanti t ies 
q{ density of fluid 
£?s density of particles 
<p(e) quant i ty determining the rat io h/R for the structure of the given type and fo r 

a given arrangement of particles 
co angle according to Fig. 1. 
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